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Abstract: Enantiomerically pure 2',3'-dideoxy-3"-oxacytidine nucleoside analogues were synthesized from L-ascotbic acid
in eight steps and good overall yicld.

The discovery of 3'-azido-3'-deoxythymidineZ (AZT), 3'-fluoro-3'- deoxythymidine® (FLT), 2',3'-dideoxycytidine? (DDC) and
2 3"-dideoxyinosine* (DDI) as potent inhibitors of the HIV virus, the causative agent of acquired immunodeficiency syndrome
(AIDS), has stimulated intensive efforts in targeting nucleoside analogues as potential anti-HIV agents. Clinical studies have
shown adverse toxicities associated with AZT, FLT, DDC and DDI and reslshnt virus strains are emerging. Recently, Belleau
and coworkers reported the anti-HIV activity of a novel series of 2',3"-dideoxy-3'-thia and 2',3'-didecoxy-3'-oxa nucleoside
analogues.S The 3'-thia series features 3TC which was found equipotent to its cnantiomet in antiviral activity against HIV-1 and 2
and considerably less cytotoxic.5 3TC possesses the “unnatural” L-sugar configuration® and is currently in clinical trials. Racemic
2',3"-dideoxy-3"-oxacytidine was found to be highly toxic and its anti-HIV activity could not be assessed. In this paper, we wish to
report a novel and practical process for the synthesis of 2,3'-dideoxy-3"-oxaribofurancsides and their transformations to 3'-
oxacytidine analogues cotresponding to D and L-sugar configuration. Recently, Chu et al. reported the synthesis of dioxolane
nucleoside Mogm possessing the “natural” D sugar configuration in 12 steps from l,6-anhydto-D—mlnnose.7

With precedents in the work of Abushanab® and others?, L-ascorbic acid 1 was cnvisaged as a uscful starting material.
Condensation of 1 with benzyloxyacetaldehyde dimethyiacetall® 2 in acctonitrile in the presence of TsOH afforded a (1:1)
mixture of diastercomers 3 and 4 in excellent isolated yield (Scheme 1). lnllialuuemptsmpepnn3and4byuing'lb0ﬂor
MSA in benzene or tolucne, SnCly 11 or titanium tetraisopropoxide in cthyl acetate were unsatisfactory.

Fractional crystallization of a crude mixture of 3 and 4 using benzene and cthyl acetate mixtures provided compound 3 in > 98%
de (HPLC). Intermediate 4 was isolated in 60% de by fractional crystallization from benzene. Degradation of 3 to acid 6 was
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achicved in two steps. Oxidative degradation of 3 with basic HyO,, followed by extraction with hot ethanol furnished Sa in
excellent yield. In the sccond step, Ruthenium trichloride - catalyzed sodium hypochlotite oxidation (Wolfe oxidation)!2 of Sa
under controlled pH conditions!! afforded acid 6. The presence of benzyltriethylammonium chloride enhanced substantially the
rate of formation of 6. In a similar fashion, a 1:4 mixture of 3 and 4 was converted to 6 and 8 from which the less polar acid 8 was
casily isolated by flash chromatography!3 (Scheme 2). '
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Conversion of the carboxyl group in 6 or § 10 the acetoxy group was achieved by oxidative docarboxylation induced by load
tetrascetate in acotonitrile10:14 1o produce the acetates 7 or 9 in good yield. The coupling of 7 or 10 with silylated N-
acetylcytosine in the presence of the Lewis acid TMSOTY1S produced a mixturs of nuclooside: analogues 11 and 12 in 1:1 ratio.
Separstion and deprotection afforded enantiometically pure 11 and 12. Similarly, 14 and 15 were obiained (Schene 3). The anti-
HIV activity of 11, 12, 14 and 15 was determined in whole cefl assay (MT-4, RF strain of HIV-1) st conocatrations up to 100 pg/
ml. The trans analogues 12 and 15 were found to be inactive and not toxic. Compound 14 was cytotoxic whereas 11 was very
active (ICsg = 0.045 pg/ml) but somewhat cytotoxic (IDsg = 10 pg/ml). Details of the anti-HIV activity will be reported
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In conclusion, we present here a ovel and practical entry to enantiomerically pure 2',3'-dideoxy-3'-oxaribofuranosides and their
couplings to furnish all BCH-203 and BCH-204 sterecisomers from a common starting material. The cis analogue emerged as a
potent anti-HIV agent. . '
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Selected phiysical and spectral data:
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138.28, 152.79, 170.43. ‘
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4 ol, [0)204 +18.6" (c,1.2,McOH), 'H NMR (DMSO-dg) 8 3.35-3.50 (m,2H), 3.90-4.10 (m,2H), 4.20-4.30 (m,1H), 4.49
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(L1H,J=7.8H2), 4.53 (3,2H), 4.57 (dd,1H,7.4H2,5.2Hz), 5.15 (1,1H,J=3.9Hz), 7.20-7.40 (m,5H), 12.7 (bs,1H). 13C NMR
(DMSO-dg) 8 67.41,70.13, 72.52, 73.21, 103.18, 127.53, 128.28, 138.09, 172.16.

8 il [alg +4.6" (c,1.0,CHCl3). 'H NMR (DMSO-dg) 3.54 (m,2H), 4.56 (dd,1H, J=4.7Hz, 6.9Hz), S.11 (¢, 1H,J=4.1Hz),
7.20-7.40 (m,5H), 12.7 (bs, 1H).

11 m.p. 173-175°C Lit.7 m.p. 181-183°C, [a]422 + 35.2° (C, 1.0, MeOH) Lit.7 [a] 425 +21.0° (C, 1.0, MeOH). 13C
NMR (DMSO-dg) 3 60.76, 71.46, 81.37, 94.30, 105.41, 141.32,155.76, 166.25. Chiral HPLC (>99% cc).

12 m.p. 188-190°C Lit7 m.p. 185°C, [a]422 - 68.5" (C, 0.5, MeOH) Lit. [a]42> - 25.2 (C, 1.0, McOH).13 C NMR
(DMSO-dg)  62.14, 70.52, 83.11, 94.40, 105.81, 140.90, 155.62, 166.20. Chiral HPLC (>99% ec).
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